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Abstract

Microgrids (MGs) have emerged as a promising solution for providing reliable and sus-
tainable electricity, particularly in underserved communities and remote areas. Integrating
diverse renewable energy sources into the grid has further emphasized the need for effec-
tive management and sophisticated control strategies. This review explores the crucial role
of control strategies in optimizing MG operations and ensuring efficient utilization of
distributed energy resources, storage systems, networks, and loads. To maximize energy
source utilization and overall system performance, various control strategies are imple-
mented, including demand response, energy storage management, data management, and
generation-load management. Employing artificial intelligence (AI) and optimization tech-
niques further enhances these strategies, leading to improved energy management and
performance in MGs. The review delves into the control strategies and their architectures,
and highlights the significant contributions of AI and emerging technologies in advancing
MG energy management.

1 INTRODUCTION

In recent years, there has been accelerated growth in energy
demand that has led to an emergent need for utilities to
plan properly for their future when expanding the electri-
cal generation capacity. Renewable energy sources (RESs) and
energy efficiency development programmes have been popu-
lar initiatives to contribute to global warming mitigation [1–3].
According to [4], three-fifths of the Sub-Saharan African (SSA)
countries have inadequate energy access, especially in remote
areas. Microgrids (MGs) have significantly contributed to the
development of rural electrification programmes to bridge the
energy access gap and meet the Sustainable development goal
(SDG) 7 [5]. A remarkable number of MG developments have
seen a rise in off-grid or isolated MG systems, especially in
developing countries [6].

Mostly, MGs have played a huge role in incorporating addi-
tional energy into the utility grid as distributed generation (DG)
[7–9]. This has increased power generation, however, under-
standing the possible impacts on the networks is of utmost
importance. There can be major drawbacks associated with
DGs due to their intermittent nature and unpredictable demand
[10]. Thus, leading to the development of energy storage tech-
nologies to overcome these challenges [11]. DG technologies
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have contributed to reducing power utility charges and provid-
ing ancillary services at both the transmission and distribution
levels due to their optimization nature. However, the inte-
gration and hybridization of various energy sources in MGs
normally bring challenges that require resilient optimum control
strategies to be implemented [12].

To achieve optimal technical and economic operations in
MGs, it is inevitable to do without energy management systems
(EMSs). EMSs play an important role in operational planning
and energy scheduling. Various researches have been conducted
to come up with novel methodologies and tools that can extract
nearly all the available energy resources [13]. Optimization of
EMS operations can solve MG control problems by mitigating
any other inefficiencies and ensuring available energy utilization
is maximised whilst minimising cost [14]. It has been noted how
significant advances in artificial intelligence (AI) and optimiza-
tion methods have been exploited to ascertain optimal solutions
in MG control strategy applications [15]. The MG depends
on proper control of various decision variables to achieve suc-
cessful optimal operations. In [16–19], they highlight how MG
control strategy studies have predominantly been conducted in
developed countries. Despite the acute growth in community-
based MG systems in developing countries, there is a need to
pay more attention in researching on MG energy management.
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1.1 Motivation behind the increased interest
in control strategies and energy management

The research interest focuses on identifying issues and gaps
concerning control strategies and energy management oper-
ations in MG systems [20]. It also explores the role of AI
and optimization tools in MG control strategies and emerging
advanced technologies. Despite the benefits of hybrid energy
sources (HESs) in MG systems, the uncertainty in generation
and load changes can contribute to instability issues and other
complexities if not managed properly [21]. Solving these chal-
lenges requires the use of simultaneous multiple operations,
which may further introduce issues of controllability, scalabil-
ity, and real-time collaboration of RESs at the component level
[22]. Thus, the motivation behind this study is to see coor-
dinated energy utilisation in a secure, reliable and economical
manner within MGs. Further description has been provided
below:

1. To satisfy the generation-load demand energy balance
considering the non-linearity of a hybridized system.

2. To guarantee a secure quality of service that fulfils the con-
sumers’ needs while reducing cost operations and making
profits.

3. To regulate the voltage and frequency requirements of the
MG system.

4. To provide an interactive energy management system in
which end users may also play an active role, especially in
daily energy consumption.

5. To acquire adequate data analysis that will positively impact
the daily operational running of the MG for both the
operator and the consumer.

1.2 Overview of microgrid (MG) systems
and their benefits

A microgrid is a small-scale power system operated as a stand-
alone or grid-connected mode to facilitate power provisions for
a defined area [23]. MGs can be divided into three main sec-
tions; generation, transmission and distribution, depending on
the size of the system. MGs connected to the distribution net-
work level will directly feed electric energy to the distribution
loads; thus, the transmission will not be involved in this case
[24]. The structure of an MG system consists of five major
components: (1) energy source(s), (2) loads, (3) energy stor-
age, (4) control unit, and (5) point of common coupling (PCC)
of components. Figure 1 shows the components of the MG
system [25]. An MG that operates autonomously without con-
necting to the main grid is referred to as an “isolated or off-grid
microgrid.” Isolated MGs have been gaining popularity because
they supply electricity with less environmental implications, less
complex instalments, and are presumed to be extremely reli-
able and efficient, especially for HESs [26, 27]. These isolated
MGs are typically found in off-grid communities, where there
are challenges in extending the main grid infrastructure due
to technical, economic, and geographical conditions [28]. They

can also operate autonomously and disconnect from the tradi-
tional grid as localized grids. These MGs are typically found in
remote areas where it is not economically feasible to extend the
main grid. They rely on standalone power sources, such as solar
photovoltaic (SPV) panels, wind turbines (WTs), or small diesel
generators, to meet their energy demand.

MGs can be differentiated into residential, commercial or
industrial depending on the type of loads to be connected.
When various technologies are introduced to MGs, they can
form advanced smart grids composed of producers and con-
sumers and/or prosumers. Some of the elements that are
considered when designing a reliable MG system are [29]:

1. Microgrid sizing and technologies used;
2. Control strategies and switch modes;
3. Voltage/frequency control;
4. Active and/or reactive power balance;
5. Types of integrated RESs and their positioning.

Due to their nature of being small in size as compared to
the main grid, MGs tend to have a minimal CO2 footprint and
less complex power quality issues. The clustered hybrid MGs
have recently become an interesting research area, looking at
the scattered nature of the systems [13]. However, there are still
several unresolved MG behaviours that are yet to be thoroughly
and methodically investigated. Some are issues of optimal sizing,
data security and advanced management that require intelligent
entities to take part in decision-making and control.

1.3 Overview of hybrid energy systems
(HESs) in MGs

In the last decade, there has been a trend of increasing the
energy market with a mix of various renewable energy (RE)-
based MG systems [30]. When two or more energy sources
are combined with or without energy storage to manage power
production variations supplied to the load, it is referred to
as a hybrid energy system (HES). HESs increase MG sys-
tem reliability when designed and managed properly, therefore,
it is important to pay close attention to the type of source,
energy conversions and efficiencies, and optimization methods,
when coming up with hybrid system configurations. Accord-
ing to [31], renewable energy technologies (RETs) are the most
favourable and cost-effective solutions to deliver clean energy
while minimizing the effects of global warming in low electricity
access areas. Most countries in Sub-Saharan Africa (SSA) have
recently shifted their focus to promoting sustainable energy
and constructing resilient ecosystem-based MGs using RETs,
mostly targeting off-grid rural communities without access to
the utility grid [32].

Recent studies have explored the implementation of HESs in
MGs to complement one another to improve the systems’ relia-
bility and effective use of energy [13, 33–35]. The commonly
used energy sources in hybrid systems are; SPV-WT-battery
energy storage system (BESS)-diesel generators [9]. The most
common configurations in the SSA have been a combination of
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FIGURE 1 Schematic structure of the MG
system components. DR, demand response; MG,
minigrid; PV, photovoltaic.

SPV and BESS with diesel generators. Especially in cases where
the MGs are completely inaccessible to the main utility grid [36].

Power electronics interfacing has also led to significant
advancements in integrating RESs leading to a paradigm shift
from conventional power systems. The RE integration chal-
lenges when in operation due to the intermittency nature are
normally suppressed by introducing an energy storage system
(ESS) to improve reliability and for efficient operations [37].
The integration of ESS has been rapidly increasing due to their
valuable prospects in improving the power system stability and
mitigating intermittent RESs in MGs. Thus, elevating overall
system performance.

In essence, this has necessitated the implementation of con-
trol strategies that can achieve optimum MG management
operations from the generation point to the load demand [38]. A
comprehensive study will help identify some of the effective and
efficient control approaches employed in MGs. A retrospection
of existing studies conducted on various control strategies and
MG management systems will be discussed, leading to the fulfil-
ment of this review. Therefore, an overview of the review’s main
contributions is as follows:

1. Describing the implementation of control strategies in the
context of MG systems and energy management systems.

2. Assessing control strategy architectures in MG systems.
3. Demonstrating the importance of AI, optimization and

emerging technologies in MG control strategies.

1.4 Methodology

The research has used a scoping review approach which aims
to map the key concepts of optimal control strategies in
MGs. There was a comprehensive coverage of available liter-
ature which was searched from different sources in electronic
databases and hand searching of key journals and conferences.
Figure 2 illustrates how the documents were filtered leading to
article selection considered in the study. A combination of key
thematic words that included the following terms “microgrids,”
“smart grids,” “hybrid energy sources,” “optimization,” “con-
trol strategy,” “energy management” and “artificial intelligence”

and others were searched in the search engines. The study was
limited to published articles from 2010 to 2024, that covered
recent novel control strategies and emerging technologies in
optimizing MG operations and its components. The material
was limited to English articles only due to the cost and time
involved in translating foreign text material. Having adopted
these limits for practical reasons, it is worth pointing out that
potentially relevant papers could have been missed. About 130
technical papers, 41 review articles, 41 conferences, 4 internet
sources, 5 reports, 2 books, and 5 book chapters discussing
various case studies were considered.

The paper is organized as follows: Section 2 introduces the
control strategies for MGs which is further categorized into
the MG integration and control challenges, control strategy
models, multi agent systems, virtual power plants, digital twin
concept, MG management and an in-depth analysis of some of
the reviews, respectively. Section 3 discusses the application of
AI and optimization techniques. Finally, the conclusion and key
findings are presented Section 4.

2 CONTROL STRATEGIES FOR MG
SYSTEMS

Control strategies for MGs play a crucial role in improving
the management of HESs [39–42]. It refers to the methods
employed to optimize energy generation, storage, and dis-
tribution within MG system applications. Control strategies
encompass a variety of techniques and technologies to effec-
tively manage these domains [43–45]. These strategies ensure a
reliable and efficient energy supply, maximize the use of RESs,
minimize grid disturbances, and optimize the overall system
performance. Most strategies are employed by understanding
how to model a resilient MG system that can achieve mini-
mum cost operations whilst meeting the demand securely and
reliably [25]. The available resources must be optimally sched-
uled considering all the uncertainties that can be experienced
by the system [4]. Implementation of any form of control tech-
nique requires understanding the mode of application and/or
operation to identify the most suitable control strategy. The
following subsections discuss the integration of some of the
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FIGURE 2 Overview of methodology for literature analysis.

control strategies and control challenges in MGs, control archi-
tectures and various management methods. It also highlights
some of the emerging technologies employed in MGs.

2.1 MG integration and control challenges

As discussed earlier, energy sources in MG setups are connected
to form HESs that share power with various load points. Usu-
ally, they are connected to a common bus via converters with
varying topologies which raises an important issue of control-
ling the resources for appropriate power sharing. Maintaining
appropriate frequency and voltage magnitudes, and MG power
balance can pose challenges if there is no support from the
utility grid [46, 47]. Due to the non-existence of an infinite
bus in isolated MG systems, they are required to independently
maintain the reactive power [48]. Other technical and economic
challenges that may arise in MGs include power quality, oper-
ational cost, poor resource integration, underutilization, and
instability issues [49–52]. Under normal circumstances, a size-
able MG system is designed to have additional contingency
reserves and adequate dispatchable generation that satisfies the
demand’s needs at all times.

MGs can be further classified into alternating current (AC),
direct current (DC) and/or hybrid systems, which are fur-
ther sub-classified depending on the following: architecture,
operation, source, application, and size. Table 1 presents a com-

parison between the AC and DC MGs. Normally, DC MGs are
more reliable and efficient when connected to different energy
resources compared to AC MGs. Despite being able to con-
nect all RESs and loads to a common AC bus, AC MGs tend to
face control and operation challenges. Many studies have inves-
tigated system protection, MG stability, HESs in MGs, and the
incorporation of energy storage systems (ESSs) [53–57].

The authors in [58] conducted a comprehensive study on
some of the existing types of MG models, including the appli-
cability and principles behind each model depicted in Figure 3.
MG modelling techniques were classified into four categories
which are helpful to researchers especially when designing
MG controllers and stability analysis tasks. Each MG model
depends on the configuration and type of components to be
used. The component-wise modelling concept captures the least
order possible of each component in individual sources, storage
devices, loads and network parameters which are aggregated to
obtain the complete MG model. Lumped models normally have
microsources, ESS units, loads and networks modelled in a
modular single state-space model. The dynamic equivalent mod-
elling can be modelled using five different techniques to obtain
a simplified model which explores related aspects from within.
The involvement of generation uncertainties from some RESs
prompted predictive models to be developed for the operational
planning of the MG.

The types of connected energy sources need to be designed
with appropriate control measures when integrating MGs with
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TABLE 1 Comparison of DC and AC MG-based distribution systems.

AGENT

Power

converters

Reconfiguration

of the existing

system

Control

approach

Power

electronic

interface

Complexity

level of

interface

Energy

storage

management

Protection

system Stability

Grid

compliance

DC Yes No Simple Medium Low/ Medium Yes Complex and
costly

Unaffected by
external effects

No

AC No Yes Complex
control
process

High High No Simple, mature
and cheap

Affected by
external
disturbances

Yes

FIGURE 3 MG modelling techniques.

HESs. A good example is of instability challenges faced by
wind power due to varying speed operations and power control.
There will be a need to take into account the various control
layers tasked for each component in MGs so that appropri-
ate measures are considered when transient events occur. Ref.
[59] researched the centralized supervisory architecture of an
EMS of a tidal turbine, SPV system, diesel generator, and Li-ion
battery, for a hybrid energy-isolated marine MG system. The
central controller received information from local controllers
and determined optimal decision strategies for each energy
system. The main objective was to ensure optimal MG oper-
ations by minimizing its operations and maintenance (O&M)
costs. Ref. [60] proposed a control scheme with enhanced fault
ride capabilities which reduced the overvoltage and overcur-
rent challenges. The strategy ensured smooth operations that
satisfied the grid code operations. However, there are still lim-
ited improvements in system parameters that can achieve nearly
perfect operations, especially during fault conditions.

Some MG control strategies have been employed to stabilize
the output that utilizes real power-frequency and reactive power-voltage

control modes for the grid and islanded modes [2]. Smooth
switching operations render stable operation in each mode
within a series of strategies. Some researchers have looked at
how to deal with under-frequency load shedding during power
grid failure [61]. However, load-shedding schemes that consider
frequency only normally face several challenges, such as unnec-
essary load tripping. Thus, using conventional load-shedding
approaches will not obtain the optimal solution or efficiently
overcome the complexity of ever-evolving MG systems [62]. It

can be noted how various factors have an influence, including
time and transients, as depicted in Figure 4.

It is also important to consider time scales when developing
and implementing control strategies, which brings hierarchical
modelling of the control scheme to meet flexible and multi-
ple modes of operations. The hierarchical MG control method
consists of an autonomous system that ensures cooperation and
good scheduling of the controllers [25]. It also depends on the
time response and complexities experienced in the MG.

2.2 Control strategy models

The coordination of various energy systems in supplying high-
quality power within a stable voltage and frequency is of utmost
importance [63, 64]. Proper control strategies are required to
ensure that the appropriate MG operations are implemented.
The three main objectives of an MG control strategy in con-
trol systems are as follows: (a) to control the active and reactive
power, (b) to fulfil the load dynamic requirements and (c) to rec-
tify voltage sag and system imbalances. Thus, the MG control
functions to protect and control the integral system. To achieve
this, the MG control must consist of a centralized controller,
distribution system management, and the generation-load con-
troller [35]. However, this only depends on the type of category
the MG will be under based on topography, structure, controller
type and type of communication connection. Figure 5 shows
an overview of some control strategy methods grouped using a
tree diagram and the linkage among the categories which should
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FIGURE 4 Layers of control tasks in MGs.

FIGURE 5 Overview of MG control strategy methods.

be considered when designing a robust control system in MGs.
Each control method normally has its advantages and disadvan-
tages. That is why it is important to understand the MG system
requirements that determine the most suitable control to choose
[65].

The hierarchical structure can be split into three control lev-
els as follows: primary, secondary and tertiary control. Within
the primary control level, droop control has been identified
as the commonly used method for stabilizing the voltage and
frequency, power demand sharing and ensuring power quality
among several generators connected in the MG [66–73]. It emu-
lates the behaviour of the synchronous machine. The secondary
control level aims to restore the voltage and frequency vari-
ables to their nominal values while improving the shared power.
Finally, the tertiary control level ensures that the EMS is to
achieve optimal operations in MGs [23]. It attends to economic
dispatch, generation management and congestion management
including demand-side management (DSM).

A summary of some studies on the primary control layer
is discussed: [74] proposed a modified reverse droop control
scheme for proportional power sharing in low voltage MG sys-
tems. The proposed controller provided better performance in
terms of response and guaranteed system stability. As reported
in [62], droop control still exhibits some limitations in applica-
tion with modern MG systems. This has seen many proposed
solutions researched to overcome some problems. The authors
in [75] documented research on modelling and simulation tools
used for MGs based on SPVs. In addition, they also discussed
how droop control methods were more suitable in isolated MG
systems than in grid-connected MGs. Ref. [76] studied con-
trol methods for inverter-based MGs and focussed on droop
control techniques, and voltage and frequency regulation. The

main objective of the study was to optimize energy scheduling
operations and reliability in MGs for sustainability.

The agents mentioned in Table 1, such as the operating
mode and type of supply determine the type of control archi-
tecture and suitable topology that will be adopted in the MG
system. Centralized control requires communication in all the
connected agents and must have enough capacity to process all
the required information. The controllers in such a system are
usually not considered to be very robust. In decentralized con-
trol, each agent will have its local control which only utilizes
local measurements with limited communication with the cen-
tral control unit. Thus, the main disadvantage of this type of
architecture is the lack of secondary and tertiary control layer
systems since it is only limited to primary control at localized
levels. The multi-agent or distributed control system operates in
a cooperative way to obtain global objectives in the MG system.
The subsection below expands further to get a brief understand-
ing of multi-agent-based systems and how they were applied in
some studies.

2.3 Agent and multi-agent-based systems in
MGs

An agent is an entity that learns and analyses the external envi-
ronment whilst autonomously reacting to local events as it
updates local databases [29]. When multiple agents collaborate
and communicate with each other to achieve specific goals or
objectives in solving a given problem, they become a multi-agent
system (MAS). There has to be a central entity that receives
information from all the agents in the system to get a com-
plete picture of the coordination problem and the signals to be
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broadcast. One of the main advantages of MAS is the collec-
tive interaction among various agents for the best outcome from
the system. They are smart systems that have been identified as
viable tools for optimal control and management in MG opera-
tions [77]. The various agents in a control system autonomously
react to changes in a given environment and make decisions
without human intervention. Studies that considered agents in
MG energy management systems are discussed below.

Ref. [78] developed coordination strategies using multi-agent-
based reinforcement learning to address scalability issues in
distributed control of domestic residential systems. The com-
bination of off-line optimization with the used MAS provided
high and stable coordination performance at scale. In [79],
a BESS management agent was proposed for total operation
cost reduction while managing the charge and discharge states.
In modern systems, agents are usually capable of learning
and updating control strategies through repetitive interactions
within the environment. A MAS was proposed in [80] for
energy cost optimization of a community with high electric
vehicle (EV) penetration. The system had EMS agents with
a central coordinator that focused on the energy supply and
demand balance. The optimization problem was formulated
using mixed integer linear programming (MILP) for day-ahead
energy usage. This was used to determine the best peer-to-peer
(P2P) household energy transactions. Agents were modelled
in a decentralized approach considering the types of available
resources in the system.

An agent-based control and management MG system was
used in a community in Tanzania [81]. The proposed method
examined an MG system with challenges in automatic load
shedding and fault detection in electrical networks, focussing
on the control and monitoring of a solar-driven DC MG. The
study’s objective looked at the usage of an agent-based system
model consisting of solar energy, storage, and load agents to
be developed and simulated before real system implementation.
The system considered demand response (DR)-based energy
pricing based on energy availability and consumption by the
load user.

An investigation of a similar study on how P2P energy
transactions can encourage prosumers to regulate their trading
behaviour, ensuring efficiency and reliable usage of DESs, is
seen in [82]. The strategies employed in the P2P transactions
required complete information dynamics, therefore, a MAS
game model was used in prioritizing and controlling the trans-
actions that had a great turnover. Ref. [83] presents a study on a
decentralized autonomous control approach that used MAS to
manage energy transactions in grid-connected MGs. Transactive
energy systems in MGs require interactive networks with good
communication among various entities, thus, a MAS framework
plays a huge role in achieving the desired tasks.

The authors in [84], established how integrating MAS with
virtual power plants (VPPs) in taking part in the electricity mar-
ket could benefit the MGs. The energy trading effects of sharing
energy storage with multiple VPPs were explored in an energy
trading model. Effective management within the VPP was real-
ized through a coordinated strategy with a dynamic game of
electricity pricing. This allowed more flexibility on the demand

side, improving the RESs utilization and effective load man-
agement. A VPP can be regarded as a MAS in a way. A brief
overview of the emerging usage of the VPP concept and how
it relates to MG control strategies is discussed in the subsection
below.

2.4 Virtual power plants (VPPs)

A virtual power plant (VPP) can be defined as a decentralized
network for small or medium-scale power generation with sev-
eral sources pooled together with flexible storage and power
consumers [85]. The main objective of VPPs is to monitor, fore-
cast, optimize and trade the power in a well-networked system.
This requires centralized control to manage all the operations
effectively. VPPs networks have recently been considered in
MGs with the main focus being to minimize the operational
cost in integrated generation units while improving the utili-
sation of RERs and storage systems [86, 87] However, VPPs
highly depend on web-connected systems in a unified network
with intelligent energy management (IEM) system software that
has several advanced functions.

A VPP with a novel real-time active power dispatch scheme
based on distributed model predictive control was proposed
in [88]. The scheme permitted independent optimization func-
tions among agents as they sought information from the
connected agents. This overcame the optimal scheduling prob-
lem in massive VPP distributed resources by disintegrating
the global optimization problem into several sub-problems.
It then led to improved system stability operations and a
reduced impact on peak load since there was a fast response
in scheduling time in real-time. In [89], a study was conducted
on the dynamic optimal power flow (OPF) in multi-operated
VPPs that considered uncertainty from RESs and DSM. The
objective function was to maximize the net profit of VPPs
as multi-operator depending on cost (O&M cost, operational
cost, real power cost) and revenue. Three VPPs with dif-
ferent proprietorships were interconnected through tie lines
and the problems were solved using various optimization
methods.

A risk-based stochastic MILP model in a VPP was proposed
in [90], for optimal operation of a day ahead electricity schedul-
ing. The VPPs utilised the conditional value at risk to measure
the risks caused by various uncertainties in MGs. The opera-
tions of the VPP were compared between the grid-connected
mode and the island mode. Higher generation was noted in the
grid-connected mode since the MG exchanged power with the
main grid, thus, any excess generation was sold to the grid. It
should be noted that the study only focused on DC VPP with
a small number of DG units and there is a need to consider
other unexpected outages from equipment failure as well as the
capital expenditure in the modelling of the daily operations and
long-term planning in the future. [91] presented a VPP-based
optimal day-ahead electricity market model with hybrid renew-
able DERs and energy storage. Minimal worst-case scenarios
were mapped using an optimization framework, which allowed
for a VPP operator to set minimum profit constraints. Two
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FIGURE 6 A representation of the digital twin model with the real MG system [92].

uncertainty models were considered by the VPP combined with
scenario-based stochastic approaches for day-ahead market
pricing and wind generation uncertainty. The study showed
how VPP is capable of developing strategies in different price
scenarios.

VPPs have contributed to solving the intermittency chal-
lenges in most renewable DERs, therefore, indirectly participat-
ing in the electricity markets and energy scheduling. Soon, VPPs
will contribute to competitive electricity markets that will supply
an energy mix with reliable power supplies and stable operating
conditions. Optimized strategies were considered in most of the
studies that had VPP participation in the MG electricity market.

2.5 Digital twin (DT) concept in MGs

Digital twin (DT) technology has also penetrated its way into
MG systems, enabling a digital presentation of an entire MG
capable of performing technical feasibility studies, safety mea-
sures, reliability and control strategies [92]. DT can validate the
MG before operations and show the interaction among various
agents, giving control to make improvements on resiliency and
reliability, since the operator will have had better foresight of
MG control operations [93]. DT in MGs would also overcome
the over- and underestimation problems where MG projects
are oversimplified in models providing less technically detailed
loads or sources. Researchers have seen the benefit of DT MG
controllers to be better in managing the MG operations and
automation of DERs [94–97].

MGs with DT technology in a simulation environment mimic
the actual response, giving better insights with more accurate
replication of dynamic complex systems in real life. The aid of
DT with a data-driven approach has improved the EMS and
control strategies in MGs for real-time applications. However,
the development of DT models has presented some challenges
in framework connectivity, security, data analysis and standard-
ization. The DT framework in MG systems mainly comprises
of the physical system, the virtual system and the data manage-

ment layer to facilitate data exchange and engage in interaction
between the two systems, as illustrated in Figure 6. Due to some
unexpected changes that may lead to system faults in MGs, it
may cause difficulties in the EMS processes to correctly make
informed decisions about the assessed problem. Thus, cyber-
physical systems play a huge role in MGs nowadays. The use
of DT in MGs is of high benefit in operation, planning, state
of health monitoring, and control, among others. Some studies
that have considered the use of DT are discussed below.

Ref. [92] established a fault identification framework that
used a DT concept for real-time preventive and corrective
actions for low-level components in an MG system. The
operation considered an artificial neural network (ANN) and
a self-organizing map model-based identification strategy to
achieve the fault identification process. The coping mechanism
of the DT model digital replica of the power converter was com-
pared to a real system in fast response to identify a fault. The
results demonstrated how having a DT scheme in a real-time
environment through a hardware-in-loop (HIL) approach led
to a more reliable fault identification process.

Ref. [93], investigated the use of DT in MGs to estimate the
power consumption and communicate with the EMS in making
decisions on the suitable energy source to utilize. The support
that DT had in EMS’s decision-making improved the MG’s
overall performance, especially in the operational cost. The
work presented a methodological framework for developing
DT models that can incorporate the actual technical charac-
teristics and complexities of small productive processes (SPPs)
used in MGs. Load complexities such as in SPPs for socio-
economic developments of communities were recommended in
DT advancement and MGs’ future developments.

A framework that ensured the development of DT schemes
in MGs with a high percentage of RESs was proposed in [95].
DT was identified as an effective way that ensure optimal con-
trol strategies in MGs since it would be able to virtually analyse
and compare the dynamic behaviour of components in MGs.
The collaboration in the entire DT and the actual MG sys-
tem can be seen to be mostly dependent on communication
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among components and accurate decision-making. Thus, high-
precision simulations and accurate parameters in real time are
very important. Ref. [96] introduced a DT-based ESS opera-
tion scheduling model in an MG to minimize electricity costs
using supervised learning methods. The proposed system had
an improvement in cost as compared to an actual ESS operation
without the DT scheme. However, more MG model parameters
still need to be studied when implementing operation schedules.
The verification of the ESS model accuracy will require contin-
ued data to be collected. Refs. [94] and [97] did a comprehensive
review of studies that applied DT schemes in MG systems to
address various challenges by virtual models of the physical enti-
ties. The articles also identify the important gaps that still need
to be addressed as DT technology gets widely adopted in MGs.
The goal is to ensure an ongoing improvement in the quality of
service, efficiency optimization, resilient operations, longevity
of energy systems, and better control and management of assets
in MGs.

Existing studies [73, 98–101] have investigated many con-
trol strategies and MG architecture designs so far, with some
of the studies [4, 10, 102], mainly focusing on DSM strategies.
Table 2 illustrates an overview of various components and areas
where some control strategies were implemented. There are dif-
ferent approaches to solving control strategy problems in MGs.
Some of the strategies considered are load schedule planning
(LSP) [40], demand response (DR) [103], MAS [104], frequency
control [105] and smart grid technologies among others.

It can be noted that most studies in Table 2 have had HESs
and optimization strategies employed in different MG system
components. Limited studies have looked at EVs and forecast
models, however, it has recently started to become a trending
research area with the new emerging technologies that are get-
ting widely accepted and applicable to integrate in MGs around
the globe. A few studies have looked at DC grid systems as
compared to AC grid systems which normally have more com-
plex issues when connecting various components, due to the
nature of the system. Most sources usually supply the power
in AC with most system components operating in AC form.
Energy storage has also been highly encouraged in MG systems
due to its role when strategizing on effective use of the energy
with other sources and making sure there is a supply-demand
balance. A centralized approach in control strategies has been
widely used. We have also seen the benefits of a decentralized
or hybrid control approach in MGs. Most studies seem to have
applied a combination of both aspects in their studies with a few
applying either one of the two approaches depending on imple-
mentation, applicability and what the researchers were trying to
achieve. The following subsection will discuss some of the man-
agement systems that are commonly considered alongside the
control strategies employed in the context of MGs.

2.6 MG energy management

An energy management system (EMS) is required to manage the
various components of MGs. An optimum power flow from
the supply source to the load demand is one of the require-

ments expected at any moment. Thus, an EMS is introduced
to observe that the employed strategies are met in the follow-
ing stages: generation, distribution, and load demand side. The
classification of some of the energy management approaches
employed in MGs is shown in Figure 7. Justo [112] reported
how the management of energy in MG systems involved
determining the most economic dispatch of renewable energy
resources (RERs) with a minimum total operating cost while
satisfying the operating constraints and demand. Most findings
were on the IEM of hybrid systems using AI techniques. The
techniques employed various advanced intelligent algorithms
from real-time energy pricing, generation control, and energy
resource forecasting among others. EMS penetration in MGs
of different levels was promoted to complement other schemes
such as congestion management and DR.

2.6.1 Data management

Data management in MG systems plays a huge role in manag-
ing, transmitting, and storing useful MG data. It is important
to understand the energy consumption by the consumer and
the power produced from the energy sources to effectively use
the system in an optimum manner [113]. The use of smart
meters has enabled customers to be involved in managing power
usage, allowing the utility to monitor voltage and frequency,
measure electricity usage, and identify faults and outages with
ease. However, this data handling must be dealt with some level
of privacy that has proper structures and policies [114]. The
reference architecture in Figure 8 shows a data management
system (DMS) that manages electricity and load information
in MG utilities. Such a system relies on information from the
data collected from communication technologies. The data can
provide valuable insights into the MG system operations in all
stages. The information layer is embedded in the MG system to
allow two-way communication between the controllers, utility
operators, and local actuators [86].

Ref. [115] presented the latest key findings that focussed on
practical developments of MG operation optimization using
blockchain, smart meters, and energy monitoring systems,
among other advanced communication and control technolo-
gies. The analyzed data is essential for determining electricity
market behaviour, power scheduling, operation of MG subsys-
tems, and equipment maintenance. An integral interface of data
mining with optimization techniques is anticipated in the near
future. Stewart et al. [116] developed a proactive MG control
strategy that used micro-phasor measurement units (PMUs) to
assist with real-time data handling of the controllers. The micro-
PMUs were able to detect undesirable events such as faults and
quickly relay the information in real time, allowing for decisions
to be made on time without damage to the equipment.

Guzhov and Krolin [117] assessed how the implementation
and use of data technology contribute significantly to energy
and cost savings in renewable energy technology (RET) applica-
tions. There have been advancements in metering infrastructure
to communicate with sensors and controllers in MG systems
[118]; however, data handling and management have always
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FIGURE 7 General classification of the MG energy management approaches [12].

FIGURE 8 Data management system architecture [120].

been a challenge. The generation of big data, data visualization,
and transmission speeds require models that fit perfectly into
the context of the model application. The growth of electricity
consumption will also demand data management in the systems
to keep up with the development [119].

2.6.2 Demand-side management (DSM)

Demand-side management (DSM) modifies the shape of the
load patterns by shifting the controllable loads from peak
hours to off-peak hours. DSM has activities that influence
the behaviour of customers regarding their power consump-
tion, making them aware of various scheduling schemes [121].
When the peak demand is lowered, the mismatch between the
generation and demand will be reduced. There will also be a
reduction in electricity costs because the utility company will
maintain an average power supply during the expected peak
hours. Case studies were conducted in [122] to evaluate the
effectiveness of different control strategies in improving EMS in
isolated MGs, such as the implementation of an optimization-
based DSM in a remote village MG. The results showed that

the demand management strategy significantly reduced energy
consumption during peak hours, resulting in improved reliabil-
ity and stability of the MG system. It was found that peaker
plants charge higher prices per kWh. According to [76], the
EMS of an MG encompasses both generation and DSM while
satisfying system constraints to realize an economical, sustain-
able, and reliable operation. In addition, the benefits provided
by EMS include the following: power dispatch to save energy,
reactive power support for frequency regulation, reliability to
loss cost reduction, energy balance to reduce greenhouse gas
(GHG) emissions, and customer participation to customer
privacy [123].

Razzaq et al. [124] proposed a cooperative DSM that used
a prosumer-based energy management model with an energy-
sharing scheme. Note that DSM balanced the load as it
conserved the energy available. This mechanism influenced
how DR programs can be implemented. Load management
is one of the methods employed under DSM, with control-
lable load management (CLM) allowing customers to actively
participate in managing their loads using smart devices [87].
Controllable loads can be divided into three types: (a) Active:
Have greater flexibility and can be charged or discharged by
the grid; (b) Passive: Interruptible and can be shifted, and (c)
Broad: MGs and VPPs. DR is a critical control strategy under
DSM, which involves adjusting electrical loads in response to
changes in electricity prices or grid conditions [103]. This allows
for more flexibility in EMS, as consumers can voluntarily shift
their electricity usage to times when there is excess RE gener-
ation or lower electricity prices. Some strategies aim to match
the electricity demand with the available RE generation, thereby
maximizing the utilisation of clean energy sources [106].

Ref. [18] proposes a DSM strategy based on price elastic-
ity and incentives for an isolated SPV MG. DSM has been
considered an important method for both energy and demand
management, with different strategies such as policies, power-
saving products, incentives and penalties and the inclusion of
electricity tariffs being implemented to positively improve elec-
tricity consumption. It should be noted that the unpredictable
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FIGURE 9 Impact of energy storage in the MG
system [125].

consumers’ behaviour to price sensitivity may differ signifi-
cantly between developing and developed countries, and from
community to community. This is mostly influenced by socioe-
conomic welfare and factors controlling the energy market. The
authors expressed how there were limited studies on DSM in
SSA, and encouraged for more research to be conducted. The
proposed strategy looked at an isolated Ngurdoto SPV MG in
Tanzania and considered the customers’ behaviour.

2.6.3 Energy storage management

The MG system is usually integrated with an energy storage
system (ESS) to complement it during peak hours and when
the generation fails to supply power to the load user [125].
The expanding growth of RETs has endorsed the wide usage
of ESSs to assist in managing the power balance and stability
of the MG system. However, the ESS technology experiences
challenges such as cost, reliability, battery life cycle, charging,
and/or discharging. This calls for solutions to improve the per-
formance of the ESS using appropriate energy management
systems (EMSs) for effective and optimum MG operations
[126]. According to [127], various studies have examined energy
storage management as a control strategy for isolated MGs.
Fluctuating RES are normally smoothened with ESSs to pro-
vide quality power at all times. ESSs are classified depending
on the type, usage, materials used and formation. A detailed
classification of ESS has been discussed in [125, 126].

Figure 9 illustrates the impact of energy storage on the gen-
eration and load profile in an MG system. The generation with
storage ensures that the demand meets adequate energy needs
whereby during the peak demand the ESS is discharged into
the network to fulfil the peak energy demands that cannot be
met by the generation baseload. And during the low demand,
the energy storage gets charged. It can be seen that the stor-
age maintains frequency and voltage by balancing supply and

demand, especially during the day with uncertainty in generation
from renewable sources. Normally, for a generation without
storage, peaking plants have to be run for periods. An MG with
a storage system will command a control strategy that can man-
age and control the ESS in optimally boosting stable energy
requirements.

Ref. [128] proposed a system value assessment for grid-
integrated ESSs to quantify the total system value and under-
stand the generation revenue across the power system. The main
purpose of the study was to investigate planning, proper opera-
tional guidance and regulations when introducing ESS into the
grid. In addition, a co-optimization strategy in the BESS was
encouraged for peak shaving and regulating the frequency. Fur-
ther assessment on the same still needs to be conducted for
ESS integration for stand-alone MG systems. Efficient energy
storage management optimizes power sharing in MG applica-
tions. The optimization must consider a design that minimizes
the overall system cost and power losses. The control of the
state of charge (SoC) is important in achieving efficient sup-
ply from storage to demand while ensuring that there is enough
energy reserved for the future. Nowadays, hybrid ESSs have bet-
ter performance in MG applications because of their reliable
operation. Further research must be conducted to overcome the
complexities in the synchronization of energy storage into MGs
[51, 129, 130].

2.7 In-depth analysis of the MG control
strategies

Many studies have demonstrated how hybrid sources in MGs
complement each other to ensure a reliable and resilient system.
Some challenges that hinder the implementation of various
RERs in hybrid MG systems are frequency and voltage control,
intelligent energy management system (IEMS), operational
cost, power converter control systems that connect generation
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TABLE 3 Main features of some MG control strategies.

Ref. Control strategy

[131] The strategy used a DSM-based optimal EMS with a hybrid honey badger optimization and dwarf mongoose optimization algorithms.

[132] The MILP model was proposed to optimally coordinate the active distribution networks HESs.

[133] A heuristic-modified particle swarm optimization (PSO) algorithm was used to determine optimal BESS controls in a real-time EMS for a community MG.

[134] A finite control set-model predictive control strategy for enhanced single inverter performance in RESs was developed. The study also developed a theoretical

framework in addition to experimental evaluation and hardware development.

[135] Optimal management of controllable shiftable loads in a system with DERs was implemented using a glowworm swarm optimization technique.

[136] A control method for harmonic suppression in wind power plants in a multi-bus MG system was developed in DigSilent software. A droop-based harmonic

current sharing strategy had better performance with the proposed hierarchical harmonic control architecture.

[137] A distributed model-free adaptive control strategy with an event-triggered mechanism was proposed to achieve optimal power sharing with reduced
communication burden. The strategy operated in a unified control framework.

[138] A variable neighbourhood search with a differential evolutionary PSO algorithm was considered in smart MG operations with multiple DERs. The multi-objective
stochastic control models were applied to solve the DER control problems to maximize profits.

[139] DSM-based household appliance scheduling and controlling techniques are implemented in a smart grid system. The electricity cost and peak-to-average ratio
demand were reduced.

[140] PSO-based power management and load scheduling methods to reduce operating costs by shifting the demand to avoid peak hours were developed and evaluated
for an MG with HESs.

[141] A combined imitative learning and deep reinforcement learning in a digital twin-based data-driven strategy for MGs.

[142] A coordinated preventive and emergency dispatch method for enhancing MG system resilience and reduced losses using a robust optimal dispatching model.

[143] Optimal allocation of hybrid WT DG and BESS using a multi-dimensional EMS in a flexible interconnected distribution network considering seasonal
uncertainties.

[144] A MAS that had several IoT devices and energy consumption was optimized using genetic algorithm (GA). Energy flow was modelled based on
communication and processing system, sensing data acquisition, ESS and power manager.

[145] A MAS-based decentralized control scheme used a loop droop controller for MG stabilization and to improve security. There was coordinated switching
between strategies in a central agent.

[146] A centralized MG control with a coordinated decentralized control strategy of the distributed RESs and integrated BESSs using an adaptive robust approach.

[147] Optimal control of an MG with DERs and BESS. A PI controller was designed using a differential evolution optimization method for energy storage. To restore
the frequency and voltage in the system, ANN was used for training the patterns that were obtained from the controller parameters.

[148] An optimal control framework called Oxtimal which relied on a reduced order model for supervisory control of PVs connected to the grid was
presented. It aimed to minimize storage device usage and deviate from dispatching loads from desired usage.

units, and socio-economics-related issues. Table 3 features
more studies on MG control strategies that were reviewed.
This sub-section provides an in-depth analysis of some related
studies that employed control strategies on various challenges
experienced in HESs, MG systems, and EMS applications.

Javaid et al. [149] presented three evolutionary algorithm-
based methods for a DSM model for an intelligent load
management system. The appliance scheduling model aimed to
achieve a cost-efficient method to manage the operating time
and schedules of electrical appliances using binary PSO, GA,
and cuckoo search optimization methods. The main contribu-
tion of the study was a model that catered for different loads
and user types to reduce peak demand and electricity costs. The
three algorithms were used to solve a centralized optimization
problem with control parameters that could determine opti-
mal solutions within an acceptable processing time. To optimize
energy consumption, the time of use (ToU) pricing scheme
was proposed with an automated system for load monitoring
and management. The problem formulation was based on the
scheduling of different appliances, which were grouped depend-
ing on the amount of energy they consumed. The developed
objective for minimizing electricity cost is given in Equation (1):

min

(
24∑

i=1

n∑
j=1

Ecosta j ,i

)
(1)

s.t ∶

n∑
j=1

24∑
i=1

Ecosta j ,
= Egrid (1a)

n∑
j=1

24∑
i=1

Et = Egrid , j + ERES ,i (1b)

𝜁max,a j ≤ 24 − 𝛽a j , (1c)

𝜎i,a j 𝜖 {0, 1} (1d)

where 𝜁max,a j is the appliance’s maximum waiting time, 𝜎i,a j is
for ON and OFF in appliances, a is the appliance for a given set
A, and Ecosta j ,i

is the cost of electricity.
It can be concluded that the application of various opti-

mization tools performs differently from the cases that were
conducted. Further investigation of other techniques, must be
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FIGURE 10 Proposed control strategy for DC bus [149].

conducted to determine the most optimal method to further
reduce the electricity costs for the consumer.

Khairalla et al. [150] proposed a robust hybrid controller for
managing current in a DC bus voltage using a supercapacitor
and a battery to stabilize power flows. A novel power man-
agement strategy (PMS) was developed using a self-adaptive
bonobo optimizer (SaBO) for optimization of the objective
function problem. Figure 10 shows the block diagram of the
proposed DC bus control strategy. The interaction among the
following components in the proposed controllers, that is, the
PMS, current control loops, and hybrid fractional order propor-
tional integral (FOPI)-PI controllers, resulted in a novel control
strategy that gave the best results. The FOPI-PI controllers
enhanced the control performance by capturing accurate pre-
cise dynamic controls with increased stability and less system
disturbances. The combination of the FOPI and PI controllers
increased its robustness and stability, giving it the ability to min-
imize overshoot and reduce settling time. It also became less
sensitive to process parameter changes. Equation (2) expresses
the transfer function of the FOFP-PI controller.

Gc (s) =
(

Kp1 +
Ki1
s𝛾

) (
Kp2 +

Ki2
s

)
(2)

where Kp1 is proportional gain, Ki1 is integral gain and 𝛾 is
value for the integrator order of the FOPI controller whilst Kp2
and Ki2 are the proportional gain and integral gain of the PI
regulator, respectively.

The proposed control strategy utilized batteries to handle
the power surge changes whereas superconductors handled the
rapid power changes, to overcome the slow time response by
the batteries.

The main aim was to achieve an optimally coordinated utiliza-
tion among the batteries and superconductors. The proposed
SaBO technique was introduced for the first time in DC-based
MG systems, and it performed extraordinarily well, giving an
improved BESS life span and steady-state performance.

Kermani et al. [151] investigated the performance of a PV-
BESS-based MG system using a rule-based energy management
optimization technique that considered the cost function as the
objective problem. The EMS optimally scheduled the available

resource utilization for a grid-connected MG system. The con-
sidered model of the hybrid generation MG system is shown in
Figure 11. Equation (3) defines the objective function used in
the study as follows:

min (CF ) = min

(
T∑
t0

CR (t ) +CP (t )

)
(3)

where CF is the cost function, CR is the cost received, and CP
is the cost paid with time (t).

The rule-based EMS strategy is based on predefined rules
from MG constraints. Limitations of the MG system had to be
noted to make an accurate strategy that follows the guidelines.
The Bellman algorithm was used to determine the minimum
value of the cost function. This system enabled FiT for surplus
power to be sold to the main grid. The iteration-based method
met the study objectives by achieving energy cost reduction and
increasing PV efficiency. However, the study lacks comparative
analysis with other optimization techniques for similar systems
to prove the superiority of the proposed method.

Moghaddam et al. [152] proposed multiple MG management
operations using a fuzzy self-adaptive (FSA) PSO algorithm.
The developed objective function had a multi-objective opti-
mization problem to minimize the total operating cost while
considering emissions. The developed multi-objective optimiza-
tion model is expressed as follows:

(1) Minimize the total operating cost:

min f1 (X ) =
T∑

t=1

cost t (4)

(2) Minimize total pollutant emissions:

min f2 (X ) =
T∑

t=1

emissiont (5)

where cost includes any cost of operation in the system, for
example, fuel cost, utility cost, battery cost, and emissions
including CO2, SO2, and NO2 with time (t).
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FIGURE 11 Hybrid generation MG system structure [151].

The FSA approach was introduced to overcome the inertia
weight and learning factor challenges experienced in the con-
ventional PSO algorithm. The main contribution of this study
lies in the modification of the proposed optimization approach.
A suitable provision of power exchange in a grid-connected MG
benefited both the objectives by reducing emissions and cost
with some acceptable precision in results.

Song et al. [153] proposed a switched integral reinforce-
ment learning model to solve frequency control challenges in
a grid with EVs. The scheme had an ANN structure to train
the proposed model for the dynamic asymmetric problem fre-
quency regulation capacity problem. This study introduced a
novel scheme that enabled cooperation between vehicle-to-grid
(V2G) systems and grid power plants with a primary focus
on controlling the frequency regulation schedules. Figure 12a
depicts the V2G integrated grid model with RESs, EVs, gen-
erators, and controllers. The proposed ANN used a modified
switched NN structure that was specifically for V2G frequency
regulation control, as depicted in Figure 12b. Unlike the classi-
cal ANN structure, the switched NN structure had two similar
subnetworks, giving the V2G system more flexibility in control-
ling the total cost. The superiority of the proposed switched
integral reinforcement learning technique in improving the
performance of frequency regulation and control cost was com-
pared with other controllers on an IEEE-14 bus test system.
The proposed method achieved better frequency regulation per-
formance and a smaller control cost. Further research in the
frequency regulation controllers coordinated to save costs in
MGs was recommended.

Hai et al. [104] proposed a voltage control method to perform
effective multiple coordinated controls in PV units, converters,
and BESSs in low voltage (LV) distribution systems. Accurate
control commands were determined by the scheme to maintain
normal line voltage ranges. A hierarchical control architecture
with a MAS, shown in Figure 13, was developed and designed
for the Gochang LV distributed system. It had a master and
local agent at the supervisory control units. The local agents’
control algorithms were embedded into a remote unit with

automated metering infrastructure (AMI) devices using 32-bit
microcontroller hardware. The voltage control method aimed to
improve the utilization of DERs, prioritize the source that can
produce more power, and to reduce energy losses in the net-
works. The BESS’s rated size had to be reduced to minimize the
energy discharge for voltage control. The proposed voltage con-
trol strategy was implemented and analysed for several cases to
evaluate its performance. It was noted that the implementation
of affordable microcontrollers worked best in low and medium
voltage distribution networks, whereas in large complex net-
works, there would be a computational burden and a delay in
the system communication. The control system also relied on
accurate data to be provided for best performance.

Ref. [154] conducted a comparative study using the Grey
Wolf Optimizer (GWO) technique and Homer Pro to opti-
mize the HES components. This was to achieve a reduction in
the cost of energy (COE), net present cost (NPC), and CO2
emissions. The study targeted HESs in a remote rural area in
India, which required careful planning and design to maximize
utilization of available resources efficiently. The main contri-
bution of the study was to address the coordination strategies
experienced in decentralized HESs. The study also identified
the best combination of the HES for the given MG system.
An assessment of how annual wind speed and solar energy
affected COE and annual electricity output was analysed. It
was noted that the GWO algorithm gave better results with a
fast convergence rate compared to using Homer Pro for opti-
mization on COE and NPC. The three combinations of HES
were modelled using PV, WT, BESS, and biogas generators. A
socioeconomic impact assessment was an important aspect to
conduct when implementing remote MGs with HES to benefit
local communities.

Alvarez et al. [155] developed a fast response optimization
technique for active power dispatching in distributed MGs. The
objective function problem was to minimize fuel consumption
and reduce emissions. The development and design of low-cost
programmable microcontrollers and simple software tools have
been gaining more attention in solving MG operations. The
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FIGURE 12 (a) Power system model with V2G [153]. (b) Switched neural network (NN) structure [153].

FIGURE 13 MAS configuration for the LV distribution system [104].

study focussed on the implementation of controllers for micro
sources to be able to adjust the grid-connected MG generation
to load online using a low-cost developed controller. A power
dispatch algorithm (PDA) and a cost function algorithm with a
heuristic approach were developed. PDA was implemented in

the central controller and tested in comparison with other algo-
rithms. The proposed methods allowed for seamless integration
of the entire system and were able to achieve the expected
objective functions. However, the study must consider looking
into more comparative analysis with other existing controllers
on overall performance, especially when it comes to practical
system implementation.

In [156], a rule-based energy management strategy for port
cranes was developed and investigated to confirm the suitability
of a hybrid energy storage system comprising grid-connected
batteries and supercapacitors. The system models were devel-
oped from graphical energetic macroscopic representations,
which included local control and physical systems. The mod-
elling had to follow the following principles: (1) integral causality
of the energetic system, (2) interaction between subsystems
and (3) inversion applied to the local control scheme. MAT-
LAB/Simulink software was used to model the proposed
method with the port crane model for a system in Cape Town,
South Africa. The EMS had three reference currents used to
control the power from the three sources. The PSO algorithm
was used to optimize battery usage. The proposed method
achieved a reduction in energy consumption from the grid and
demand peak shaving.
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FIGURE 14 Structure diagram of the one stage
H-∞ control method [157].

Ref. [157] presented a comparative study between H-infinity
(H-∞) and model predictive control methods for MGs that
ensured seamless transitions from grid-connected to island
mode and vice-versa. The proposed methods focused on
improving the performance of droop control and a compari-
son was made based on integral time-weighted absolute error,
integral of absolute error and integral of square error. We focus
on discussing the advanced intelligent control method based
on H-∞ robust control from this study. H-∞ control uses
a linear matrix inequality (LMI) tool to handle control prob-
lems to determine feasible and optimal solutions. It reduces
the effect of uncertainties and disturbances during transitions
in grid-connected MGs. Figure 14 illustrates the formulation
of a one-stage H-∞ control method. The generalized plant, Ṕ

with a plant nominal transfer function P(s) and feedback control
C(s). The control method was able to adapt the voltage, current
and power control loops which improved the power quality of
the system. The generation-load mismatch in island mode MGs
was also reduced. The simulation results show how the H-∞
based controller had more reduced error in the load voltage and
frequency compared to the model predictive control method.
H-∞ also gave a robust controller in weak MG systems where
parameters are not constant.

Similar studies that considered H-∞ have been summed up:
Ref. [158] highlighted how there are many challenges associ-
ated with DERs when connecting to the distribution networks
causing power quality issues. The authors proposed a two-layer
hybrid control scheme with PV sources using H-∞ for adjust-
ing the BESSs to suppress the voltage unbalances and an fuzzy
logic (FL) controller for the correct selection of the trans-
former on the load tap changer. The two controls worked hand
in hand with H-∞ controller parameter adjusted by the FL
controller to determine the optimal current required in the bat-
teries. A self-tuning H-∞ controller was designed to use an FL
controller for dynamic parameter adjusting. The output from
the H-∞ controller determined the battery inverters’ reference
voltages. Figure 15 illustrates the proposed primary control
level with H-∞ controller and FL controller which solves
the challenges in the system under abnormal or unexpected
conditions. The primary control level is intended to operate
optimally within desirable conditions. The control system was
tested on the distribution model with PV and BESS system in
MATLAB.

FIGURE 15 Proposed primary control level [158].

Ref. [159] also proposed a robust inertial controller for
converter-based DGs that are employed in low inertia MG sys-
tems using an linear matrix inequality (LMI)-based H2/H-∞
method. The H2/H-∞ method gave support in fast fre-
quency restoration and improved the inertial features. An
optimal H2/H-∞ controller was provided by following a lin-
ear fractional transformation that employs a convex solution
procedure. There was no need for online computations, thus
computational time and design complexity were reduced. The
novel mixed robust H2/H-∞ controller was established to
improve on the performance requirements other than just
satisfying robust Mg stability. In [160], H-∞ and μ-control
techniques were proposed to address robust frequency con-
trol in islanded MGs. Fluctuations from intermittent sources
and dynamic perturbations have a great influence on the sys-
tem frequency which requires robust controllers to reduce these
challenges. H-∞ and μ-control techniques have proved to be
robust control methods more suitable for stability analysis and
control synthesis problems in MG systems. However, exten-
sive research still needs to be done in optimizing MG control
systems since there are a few applications in MGs [161].
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FIGURE 16 Workflow. DL, deep learning; ML, machine learning.

3 APPLICATION OF AI AND
OPTIMIZATION TECHNIQUES IN MG
CONTROL STRATEGIES

The advancement in AI-based technology has seen more
smarter and complex systems offering better results. AI-based
methods have gained momentum in solving MG problems and
their control strategies. The various challenges of MG systems
such as intermittent RERs, generation and load forecasting,
estimation, control and monitoring, can be solved by develop-
ing control strategies that are system-specific with the help of
AI and optimization techniques [34, 35, 162–165]. AI encom-
passes anything that has a form of intelligence in machines
and/or systems [166–169]. It still depends on human exper-
tise to derive the knowledge and optimization problem for a
specific application. Figure 16 depicts a simplified workflow of
how AI is used to leverage data to improve performance in
certain tasks within systems. The breakdown of the steps is as
follows:

1. Data processing: The initial step involves collecting and
preparing the data that will be used to train the AI
model. This may involve cleaning, removing duplicates, and
formatting the data into a usable state.

2. System simulation: A simplified model of system is then cre-
ated to represent the real system. It is used to test and refine
the AI model before it is deployed in the real world.

3. ML ± DL: Machine learning (ML) and deep learning (DL)
techniques are applied to the data, and allow the AI model to
learn from the data and identify patterns.

4. AI prediction: Once the AI model has been trained, it can
be used to make predictions about the system. These predic-
tions can be used to improve the performance of the system
in a number of ways, such as by identifying and preventing
errors or optimizing resource allocation.

5. Integration and implementation: The AI model is then inte-
grated into the real system. This may involve developing
an application programming interface (API) that allows the
system to communicate with the AI model.

6. Optimization: Once the AI model is integrated into the sys-
tem, its performance can be monitored and optimized. This
may involve retraining the model with new data or adjusting
the way that the model is used.

As the AI model is exposed to more data and is further
refined, it can become more accurate in its predictions and
lead to even greater improvements in system performance. With
ML methods, accessed data can be analysed and used with DL
models, which are then tested and deployed in a real-life envi-
ronment [170]. We have seen how ML and DL have been used
in solving complex problems in MGs and data manipulation by
learning from experience and being able to make informed deci-
sions in the future [92]. Looking at most of the recent literature,
it can be noted that several researchers have been considering
the use of AI in MG control strategy applications.

3.1 A brief overview of some of the
emerging MG technologies

The growth of hybrid energy resource penetration in MG sys-
tems has led to the development of several control techniques,
such as state estimation substantival to system operations
[34]. Due to intermittent renewable generation, MG condi-
tions tend to vary temporally and spatially. State forecasting
has become crucial for grid operators when dispatching con-
trollable resources, preparing for changing grid conditions, and
reducing operational costs [171]. It has been noted that fore-
casted system states enable grid operators to have improved
coordinated control efforts and prioritized control needs, thus
improving system resilience, efficiency, and reliability [64, 109,
172, 173]. Conventional control methods in MGs, are primarily
used to regulate voltage and frequency, such as proportional-
integral (PI) control, and they require accurate mathematical
models of the system, despite non-linearity challenges. On the
other hand, AI-based control strategies such as fuzzy logic (FL)
control and artificial neural network (ANN) based methods can
handle non-linear system dynamics with less accurate math-
ematical models [42]. Researchers are developing ML-based
methods that can predict system states for the short- and long-
term future using neural networks (NNs), ensemble learning
and decision tree-based approaches [85].

Masoomi et al. [174] investigated the impact of Industry 5.0
(I5.0) in achieving sustainable development in RESs and its
supply chain. I5.0 has a strong responsibility to achieve sustain-
able energy solutions through human–machine collaboration
and to improve the economy whilst overcoming environmen-
tal and social challenges. The human-centric approach puts
value on people in a socio-technological environment. Thus,
ensuring efficient use of energy resources with the social and
environmental impact in mind. However, studies on MGs
regarding EMSs that are considered I5.0 are underexplored and
researchers have paid limited attention to the context of the
renewable energy sector.

DT technology already explores Industry 4.0 with AI and
cloud computing to virtually monitor physical systems. Mostly
DT technology is based on data-driven methods with ML.
Recently, we have seen huge volumes of data being available in
MG systems such as energy consumption data, energy genera-
tion data, and O&M among others. This has promoted further
research to be from a data-guided viewpoint. Power dispatching
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strategies tend to be event-driven using different control strate-
gies, with hierarchical stages that have various control tasks
in each stage [77, 117, 175, 176]. Ref. [177] proposed an
online MG optimization method that used imitation learning
improved by a data-driven approach. Imitation learning uses
an ML approach that learns from experience by imitating the
behaviour of experts to handle decision-making problems. His-
torical data was explored to learn the optimal ESS strategy
schedules.

Physics-informed neural networks (PINNs) are a recent
advancement showing promise in MG prediction and control
[178]. Several studies have demonstrated PINNs’ effectiveness.
Paruthiyil et al. [179] used a PINN-based ML algorithm for fault
detection in DC MGs. This method achieved greater accuracy
in fault location even with limited training data. Antonelo et al.
[180] developed a framework using a novel and adaptable PINN
architecture for control problems with extended time horizons.
Their approach offered faster simulations, making it compu-
tationally more efficient than traditional numerical methods.
Another study [181] employed a PINN algorithm to address
challenges in determining the Lyapunov function for transient
stability assessment in MGs. Rai et al. [182] proposed a PINN-
based modelling approach for fast frequency support in MGs
using energy storage. Their method achieved excellent data fit-
ting by incorporating the system’s physical information into the
training process. This led to improved performance and adapt-
ability of the neural network models while significantly reducing
data requirements. Additionally, a PINN learning scheme was
devised in [183] to discover control policies and certificates
for uncertain networked MGs, explicitly guaranteeing safety,
stability, and robustness. Another approach combined physics-
informed reinforcement learning (PIRL) with model-based
analysis to control inverter-based PQ controllers with trajectory
tracking capabilities in MGs [184]. This method addressed the
issue of parameter uncertainty and accelerated learning. Over-
all, physics-informed implementations can enhance the safety
of data-driven methods for MGs and prevent hardware damage
among other issues.

Hailu et al. [185] introduced a data-driven fuzzy infer-
ence system (FIS) tuned by hybrid genetic-simulated annealing
(HGSA)-FIS for quick static security assessment when there
was a component failure in a multi-area power system with RE.
An effective data-driven short-term load forecast approach that
utilized DL was proposed in [186] to improve energy utiliza-
tion in MGs. Xinhe et al. [187] presented a data-driven VPP in a
real-time electricity market for enhanced stability and reduction
in dispatching costs. The market operator had a virtual auc-
tion process in real time with the VPP bidding package model
which had to exchange power and information in between to
make accurate decisions in favour of the customer and the
supplier. The data-driven method considered the dispatching
capability and dispatching cost characteristics. Some of the lim-
itations in data-driven systems that need to be addressed are as
follows:

1. Lack of prediction confidence due to ambiguities and
irregularities in the provided data.

2. Load data can be vulnerable to threats and attacks that fool
models into giving incorrect predictions.

3. Electrical load data tend to vary from one source to another,
environment conditions as a result may bring limitations
when the data is trained and managed from multiple sites.

4. A wide variety of noise and uncertainties can have a negative
impact on the prediction performance.

The advancement in technologies discussed above also brings
an important concept of self-healing and resiliency in MG
systems. Among other benefits of various control strategies,
they enhance the resilience of MGs. For example, a study in
[188], looked at enhancing the resiliency of DC MGs using
a model predictive control. RERs and loads tend to fluctuate
with unexpected system failures which result in severe volt-
age and frequency instability causing damage to equipment and
power interruption. A resilient MG system is required to be
able to withstand any disruptions through the application of
control strategies. Armaghan et al. [189] proposed a resiliency
enhancement strategy for smart distribution operations with
DERs that considered uncertainty in weather conditions. A
Monte-Carlo simulation (MCS) for modelling uncertainties was
devised with possible management programs that included DR,
network reconfiguration of EVs and energy management. Cur-
rently, there is no universally accepted definition of resilience
in MGs or power systems. However, most existing resilience-
related research work is on the survivability of critical loads
and intermittent weather [50], defence from cyber-attacks in
cyber-physical systems [190], and penetration of hybrid energy
resources [176].

In [191], a self-healing technique in an MG with HESs was
also proposed. The model used DR with controllable loads
when the line capacity limits were reached or if the generated
capacity was low. This happened in critical cases to control
some loads within shedding zones. The authors contributed a
novel mathematical model that assisted in optimally clearing
faults by changing the topology of the grid and determin-
ing the generation. The consideration of a smart grid concept
and communication infrastructure enabled the realization of a
centralized healing procedure at the distribution level with a
cost-based objective. We have seen how MGs with MASs can
also have agents perform autonomous actions which respond
to the collective behaviour of the system as a whole in fulfilling.
Such a self-organizing system especially during emergencies and
faults in energy systems ensures that the MG remains resilient
in a self-healing setup that is adaptive with a nature-driven
perspective. The subsection below briefly introduces and com-
pares some computational intelligence methods employed in
MG control strategies with a focus on optimization methods.

3.2 Optimization techniques

An optimization method is defined as an attempt to determine
the best possible outcome from all available possibilities [45,
192]. It normally involves finding a minimum or maximum in
an objective function relative to a set of available choices in
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FIGURE 17 Taxonomy of the optimization methods [195].

a situation. Two optimization approaches commonly applied
to problems are mathematical and heuristic. Figure 17 depicts
an overview of the optimization approaches divided into two
main groups. Heuristic methods use simple strategies that are
inspired by nature and produce fast and adequate results for
problems that are too complex to solve using numerical opti-
mization methods. They have a greedy approach that makes
them easy to implement for high searching efficiency, but diffi-
cult to converge to a global solution depending on the problem’s
complexity. The mathematical approaches use deterministic
methods that consider concepts. Some examples include the
simplex approach, quasi-Newton, and steepest descent meth-
ods [193]. Mixed integer linear programming (MILP) is another
optimization method for solving complex mathematical pro-
gramming problems [194]. The MG energy scheduling problem
is a good example that can be defined by accurate mathematical
solution algorithms and solved with less computing effort while
significantly raising the probability of suboptimality [34].

There are many optimization methods, and an appropriate
method for managing and controlling MGs should be selected
according to the nature of the problem, the type of information
and data available, and other factors. Therefore, the approach of
each optimization method can be evaluated by considering its
properties, strengths, and limitations. It can be seen that there is
no single best method for dealing with optimization strategies in
MGs. Each technique is suitable for some specific situation. A
summary of some commonly adopted optimization techniques,
and their merits and shortfalls are presented in Table 4.

3.2.1 Mixed integer linear programming (MILP)

MILP algorithms are used to solve linear problems that have a
linear objective function with linear constraints and restrictions.

MILP is a classical mathematical optimization method that pro-
vides mathematically proven and guaranteed optimal solutions.
It finds solutions with high precision and accuracy. Ref. [196]
highlights how MILP is a powerful and flexible method for solv-
ing complex, large problems in engineering. MILP paradigms
have been applied to several problems, including in MG systems.
Typical applications involve factors with unknown certainty
before deciding an outcome. Some applications include MG
design and operations, planning and scheduling, energy opti-
mization, and system analysis. A general approach to the MILP
can be expressed using the following mathematical formula
[198]:

min f T xsub ject to

⎧⎪⎨⎪⎩
A.x ≤ b

Aeq.x = beq

lb ≤ x ≤ ub.

(6)

where x is an integer, A and Aeq are matrices, B and Beq are
vectors, lb and ub represent the boundaries of the constraints.

Ref. [101] presented a prediction-based optimization strategy
for energy balance in an MG system. A detailed scheme with a
multi-objective function was constructed using MILP to deter-
mine optimal solutions that were easier to solve in the CPLEX
optimizer. Ref. [197] discussed MILP methods for polygener-
ation optimization problems in energy systems. There were a
few limitations noted which were addressed by complementing
with other methods such as clustering algorithms, piecewise lin-
earization, and rolling horizon approaches. Ref. [99] proposed
a price-based DR strategy that considered the trading and fre-
quency regulation ancillary services in dispatching energy. A
three-stage MILP optimization model was used for determin-
ing the day-ahead energy planning and trading for three-time
scales.
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TABLE 4 Comparison overview of some of the common optimization strategy methods.

Method Remark(s) Merits Drawbacks

MILP Tackled using CPLEX,
MATLAB solvers, etc.

a. Provides accurate solutions for well-defined
problems

b. Easy to find optimal dispatch
c. Guaranteed convergence of solutions

a. Constraints are complex to specify
b. Risk of high dimensionality of the problem
c. Non-linear functions cannot be taken into

account

PSO Commonly used in continuous
non-linear functions,
population-based, follows speed
& velocity in a search space
among a swarm

a. Easy and simple to implement
b. Has faster speed in decision-making
c. Able to escape the local optimal solution
d. Low computational time
e. Ability to run parallel simulations

a. Not easy to obtain global optimal in less
optimal solutions

b. Impossible to look at discrete optimization
functions

c. Premature convergence

ANN Non-linear mapping
architecture, ability to learn &
adapt, used for prediction

a. Strong adaptability and learning capability
b. Networks process information and training

data with ease giving the best outcome
c. Easily handles non-linear problems
d. Can handle noisy data

a. Black box in nature
b. Flawed inputs give false results
c. Requires lots of data
d. Computationally expensive
e. May consume time to develop
f. Can be difficult to interpret results

Fuzzy logic Used in the decision support
domain, it uses a set of linguistic
rules to determine action rather
than numbers

a. Easy to interpret
b. Can accommodate several inputs
c. Does not require precise inputs
d. Has lower hardware requirements

a. Dependant on human expertise & knowledge
b. Fuzzy algorithms require broad validation and

verification
c. Accuracy compromised due to inaccurate
d. Does not have the learning ability of new

knowledge

GA Uses a random process of
mutation, crossover & natural
selection; it is an adaptive and
versatile algorithm

a. Easy and simple to implement
b. Efficient to search large solution space

without getting trapped
c. Less exhaustive search
d. Has simple operators that can solve complex

computations

a. Not easy to find an optimal solution
b. Slow to converge
c. Requires a greater number of runs

Monte
Carlo

Applied in prediction and
forecasting models with
uncertainty. Uses probability
distribution functions

a. Reduces uncertainties for time-varying and
seasonal problems

b. Flexible, can model a range of possible
outcomes

c. Able to vary risk assumptions
d. Can be used in both deterministic and

stochastic problems

a. Expensive
b. Time-consuming
c. Complex and difficult to understand
d. Requires large computing power
e. Requires many computations and times for

large volumes of variables

A home energy management framework that was solved
using MILP was proposed in [198] to optimize energy utiliza-
tion and energy payment to benefit the end user. An multi-
criteria decision making (MCDM) approach was used to deter-
mine a suitable balance in a multi-objective with the MILP
scheduling problem. The approach also contributed to the
overall improvement in electrical network upstream flexibility
and advancements in smart grid technology with sustainable
energy management. The end-user attitudes towards home
energy management problems can be complex and require more
research to be looked at for future research. The proposed
framework in [199] was formulated as a MILP problem for sus-
tainable energy infrastructures for future cyber-physical homes.
The authors had to investigate the investment and operational
cost of using PV and BESS, optimal sizing of RERs and the
effect of DR from EV. The MILP framework was used to draw
comparisons from various supply structures. It can be noted
that MILP formulations have been effectively applied. However,
the major drawbacks such as not taking non-linear effects into
account are normally tackled by combining MILP with other
methods.

3.2.2 Particle swarm optimization (PSO)

The PSO algorithm is a bio-inspired meta-heuristic intelligent
algorithm that imitates the behaviour of a swarm of animals [4].
The swarm normally moves in a certain direction in a collective
search for food. When one member locates food, the rest of
the population will follow learning from the behaviour of mem-
bers close by in search of the same food. Thus, the population
learns from each individual’s experiences and communication
as they search for food, cooperatively. PSO considers a solu-
tion through a search space, for example, a swarm of birds/fish
can be taken to be particles that explore the whole search
space with each particle evaluated by the fitness function.
The position and velocity movement of the particle will play
an essential role guided by the following general equations
[200]:

vk+1
i = vk

i + 𝛼rand1
[
g∗ − xk

i

]
+ 𝛽rand2

[
x∗i − xk

i

]
, (7)

xk+1
i = xk

i + vk+1
i (8)
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FIGURE 18 Optimization procedure of the PSO algorithm.

where xi is the position of the particle, vi is the velocity of the
particle, α and β are learning parameters (acceleration constants)
and rand1 and rand2 are two random vectors range [0–1] and g∗

is the current global best whilst x∗i is the current individual local
best.

Figure 18 shows the basic optimization procedure for finding
optimal solutions using the PSO algorithm. The PSO algorithm
is based on three basic steps: (1) initial generation of particles’
positions and velocities, (2) velocity update, and (3) position
update [201]. In the initialization stage, a population of initial
solutions is randomly generated for an optimization problem in
a feasible search area. A source (prey) represents the optimal
solution whilst the quality of the solution is represented by the
latest position.

The literature has established various studies that used differ-
ent variations of the PSO algorithm to suit the applied problem
needs in achieving optimal solutions. Cingoz et al. [67] intro-
duced a PSO-based optimization procedure that determined
the optimal parameters for an effective droop mechanism in
MG operations. The study was conducted in a simulated MAT-
LAB/Simulink environment and experimentally using a DC
MG test bench for validation. The proposed method achieved
enhanced current sharing and improved voltage degradation
with accuracy in both the simulated and experimental envi-
ronments, proving the effectiveness of the PSO algorithm.
Ref. [202] considered a hybrid optimization algorithm with
PSO to solve a forecasting problem in wind power produc-
tion for RESs. A combination of data filtering techniques was
based on soft computing that used ANNs optimized using
PSO for the developed prediction model. Ref. [203] presented
an intelligent scheduling of RESs for maximum utilization
in a cyber-physical energy system. The PSO algorithm was
employed in the designed study models to optimize the cost and
emissions in a system with grid-able EVs. In [204], a control

FIGURE 19 Basic architecture of an ANN.

strategy that used a modified binary PSO algorithm and Tabu
search approach to reduce power losses and improve voltage
profiles in networks with large DG penetration was presented.
The introduction of the double fitness approach in considering
the constraints improved the computational time, which amelio-
rated the impact of load variation on the losses. Despite the fast
calculation time, the loads at the same stage were strictly limited
by the method.

3.2.3 Artificial neural network (ANN)

ANN models were developed to imitate the biological nervous
system. ANN is connected by basic units that form direct links
with numeric weights. The units are referred to as nodes, where
each unit calculates linear combinations passed through the acti-
vation function to derive the outputs [85]. ANNs have been
utilized in pattern recognition, prediction clustering and clas-
sification applications [205]. The two main ANN architectures
are Feedforward and Recurrent, and the general structure con-
sists of three layers; (1) an input layer, (2) a hidden layer, and (3)
an output layer. Figure 19 shows the basic structure of an ANN
architecture.

In [206], a battery degradation cost model was integrated into
an energy management strategy with an ANN-based method.
ANN was able to provide a reliable set of stochastic scenar-
ios for the generation methodology with different scheduling
schemes. The main objective was to reduce the household elec-
tricity consumption cost via smart coordination of the BESS
and the EV in a home setup. The value of the stochastic solu-
tion was then computed to prove the efficiency of the proposed
method. The cooperative scheduling of the BESS had the most
profitable scheme whilst the uncoordinated scheme risked the
highest electricity cost in procurement. Ladjouzi et al. [207]
proposed an ANN-based scheme for maximum power point
tracking (MPPT) in wind turbines. An ANN with a multi-layer
perceptron (MLP) architecture was considered to train the pro-
vided datasets to achieve an optimal electromagnetic torque in a
turbine within the system. The method managed to give better
results on the influential variables used in wind turbine power
generation. Ref. [208] implemented an ANN model to solve
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short-term forecasting at the load side. Estimations of load pro-
files within 24 h were generated from historical data that looked
at time, weather, and load demand. They were integrated with
other DSM schemes to improve matching the load with avail-
able supply. ANN was the most suitable method because of its
ability to learn from both linear and non-linear relationships of
the modelled data.

The deep reinforcement learning (DRL) method is one of the
most promising learning-based EMS methods that use ANN
as a function approximator capable of continuously learning
state-action transitions under uncertainty. Agents are also able
to learn the dynamics of MG by interacting with various com-
ponents in MGs. Ref. [209] proposed a novel MG model for
energy management with flexible demand. The EMS coor-
dinated various flexible sources by prioritising the available
sources, DSM and pricing. Several DL algorithms in the study
were implemented in the MG model and empirically compared.
DRL algorithms were studied in [100] to solve energy schedul-
ing problems in MGs. The study showed that all three DRL
algorithms that were developed, were improved from the basics
of ANN architecture and modified for best performance in MG
energy control coordination. Ref. [210] critically reviewed vari-
ous studies that focussed on short-term wind power prediction
using ANN models. ANN has proved to be a robust tool for
dealing with non-linear problems that have even superior per-
formance when hybridized with other algorithms. It can be seen
that the maturity of prediction tools in providing more accurate
results with speed has improved over the years.

3.2.4 Fuzzy logic (FL)

FL system is based on deterministic and inference rules that
determine the outcome from the given inputs. It mimics the
human mind in reasoning and depends on linguistic vari-
ables. The three main components in an FL controller are: (1)
fuzzification–which is responsible for converting input values to
linguistic, (2) inference system–which determines the expected
output from the given linguistic variables in a knowledge base,
and (3) defuzzification–which converts the linguistic variables
back to output crisp values. The FL control method has been
employed in various problems that require strategic coordi-
nation in systems or machines [211, 212]. In MG systems, it
is applicable in problems such as forecasting, controlling PV
systems, load prioritization, power balancing, and system stabi-
lization. It has been noted that FL has mostly been combined
with other optimization techniques to take advantage of AI
algorithms for better performance [213, 214]. An overview of
the FL control block diagram is shown in Figure 20.

Irmak et al. [215] designed an FL-based EMS for an event-
triggered secondary control of the BESS controller to manage
overall power flow regulation and voltage stability based on
power generation from the sources. The controller was able to
prevent deep discharge and overcharging in BESS. Mamdani
inference model was used to determine the output values whilst
the defuzzification process used the centre of gravity method to

FIGURE 20 Fuzzy logic control block diagram.

determine the power values of the battery charge ratio and the
RESs. This enabled for effective management of all the sources
that were available in the system. The controller ensured that
the MG operated safely due to the power regulation and shar-
ing. The proposed study was tested in a MATLAB/Simulink
environment.

An FL controller for DR with a focus on thermostats to man-
age air-conditioning and household thermal comfort in an MG
system was proposed [216]. The considered input parameters
were radiation from solar, electricity price and the presence of
the household occupants. The EMS had to use time-shiftable
operations that were controlled using the thermostat, and power
shiftable loads such as EVs and BESS. The FL approach used
the Mamdani FIS to fuzzify the input parameters into linguis-
tic IF-THEN rules, whilst the centre of the area was used in the
defuzzification method. A daily total cost reduction was realised
with the proposed controller under the Turkish ToU and FiT
rates.

3.2.5 Genetic algorithm (GA)

GA is a bio-inspired algorithm that follows the principles of
evolutionary biology to search for solutions to a given problem.
It is a single point-based algorithm that uses an iterative process
to identify a fitness function from the following components:
(1) natural selection, (2) mutation, (3) crossover, and (4) repli-
cation. GA is stochastic and does a random search by mutation
and crossover among the population. It can solve constrained,
unconstrained and multi-criteria optimization problems, and
can address mixed integer programming problems with com-
ponents that have integer value restrictions. However, it should
be noted that GA takes many function evaluations which may
or may not converge to a local or global minimum. Figure 21
shows how a GA algorithm works.

Ref. [20] discussed how GA is applied in optimization strate-
gies with multi-objective function problems. A well-coordinated
optimization model was determined by the characteristics and
requirements for the given problem to achieve the most reli-
able and accurate simulation results. GA was also implemented
in [208] for DSM applications to manage load shedding and
load shifting, and identify optimal strategies that give the best
results in the system. GA searched for the optimum shiftable
loads and prioritized loads for load shedding. GA was chosen
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FIGURE 21 Optimization procedure of the GA algorithm.

because of its simplicity and ability to solve many constrained
problems with ease, supported by the results obtained from the
conducted study.

In [217], a study on the optimization of DG operations using
AI techniques was presented with GA being of main interest.
The algorithm was applied to reduce the total operating cost in
a 24 h time frame and determine the optimal cost of operation.
This positively affected the efficiency curve and constraints of
individual units when optimal settings of the DGs were realized.
Awais et al. [218] proposed a DSM strategy that focussed on
minimising the peak-to-average ratio and increasing MG effi-
ciency by making more use of the spinning reserve. GA was
used to solve the load scheduling problem by determining the
proper loads that can be shifted and controlled during peak load
demand, which resulted in total cost reduction. The strategy was
beneficial to the MG operator and consumer, especially at the
distribution level.

3.2.6 Monte-Carlo

Monte Carlo simulations (MCS) are used to solve problems with
uncertainties by evaluating the behaviour of physical systems
and mathematical models using a set of random input numbers.
It is characterized as a stochastic, non-deterministic sampling
method because of its use and capability of generating ran-
dom numbers. The study case in [219] used MCS to evaluate
the loss of load probability (LOLP) values at different PV rat-
ings and PV-BESS combinations. The authors recommended
considering the hardware components when modelling the sys-
tem components to achieve a more accurate measure of the
system’s reliability in both simulated and hardware experimen-

tal results. Yu et al. [220] developed a hybrid fuzzy-stochastic
technique that addressed the peak demand issue under various
uncertainties. MCS was used to determine peak-load probability
distribution data, which was projected into a matrix of vari-
ous parameters related to uncertainties. However, the method
was limited to single-objective problems. The authors recom-
mended that more studies on energy trade and supply needed
to be conducted. In [221], a techno-economic framework was
developed to model and assess multi-energy MGs. The pro-
posed stochastic approach for reliable dynamic energy market
price used sequential MCSs. It was based on MG operations
during various conditions and contingencies. It was found that
reliability services had little or moderate costs when adjustments
were made in the MG operations to maximise the benefits.

Several researchers have conducted studies on control
strategies and energy management operations in MGs for sin-
gle and/or multi-objective optimization problems [222–228].
Multi-objective function optimization problems are normally
used to consider more than one objective problem and require
complex mathematical programming to solve them. Table 5
presents an overview of some of the optimization strategies
employed in MG control applications. It can be noted how PV
and BESS components appear in almost all the studies with PV
and WT supplying power from intermittent sources. There were
very few studies that considered predictive or forecasting model
analysis. Operational cost stood out the most in most studies
as one of the objectives that was achieved, followed by energy
utilization and system stability. Various modifications of the
PSO algorithm were noted in most studies, whilst fuzzy control
and neural network methods had a fair share of application in
MG control from the studied literature. Most strategies seemed
to have employed heuristic methods as compared to mathe-
matical optimization methods, with some strategies using more
than one optimization method. The complexity of some prob-
lems demanded a multi-objective function solution to ensure
all parameters were optimally considered at the same time to
achieve a robust MG control strategy. However, in some cases,
a single objective solution approach for each interested param-
eter yields better results. It may be concluded that most studies
tabulated in Table 5 approached the problems as single objective
functions.

4 CONCLUSION

The study reviewed more than 228 research articles on methods
and strategies employed to solve various MG control problems,
ranging from 2010 to 2024. The review highlighted the growing
importance of optimization methods and some of the emerg-
ing technologies in addressing the MG challenges with and/or
without HESs. The study also identified several key findings
and concerns on the application of optimization techniques in
MG operations pertaining to control strategies. Case studies on
control strategy implementation in MGs have provided valuable
insights into the practical application of different strategies. The
strategies aim to achieve various specific objectives with most
MGs pre-eminenting to deliver resilient and self-healing systems
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during operation considering technical, cost, socio-economics
and environment among others. This can serve as a reference
for researchers interested in studying MG control strategies,
especially on MG management operations.

Strong interlinks in most emerging technological applications
such as DT, MAS, advancements in IoT, embedded systems,
ML and optimization techniques in relation were observed. AI
was somehow involved in all aspects of MG system applications,
such as control and monitoring. There is still more interest and
ongoing research towards control strategies, intelligent control
systems, EMS, and the application of AI in the MG domain.
Among the optimization methods mentioned in this study, the
PSO algorithm has been significantly applied in many opti-
mal operation management problems. This is mainly due to its
simplicity, population-based search capability, robustness, and
convergence speed. However, it is worth noting that the perfor-
mance of a conventional PSO algorithm greatly depends upon
its learning and weighting factors which may get trapped in local
optima.

It can be seen from this article that there are limited stud-
ies on DSM in SSA, and more research is encouraged to be
conducted. Individual DG applications can create more prob-
lems than they may solve if not carefully considered in the
initial system approach modelling. Exploitation of aggregated
RESs and off-grid MG systems must be studied with care so
that appropriate decisions can be made for better-performing
operations. The complex interactions among various energy
domains require comprehensive research on energy manage-
ment and control strategies in MGs. There is also a high demand
for dealing with multi-objective function problems in MGs due
to conflicting goals. It is essential to continue exploring MG
control strategies that support the incorporation of AI and
emerging technologies, with a broader look at other factors that
affect MGs.
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